Asymptotic and oscillatory behavior of nth-order half-linear dynamic equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ASYMPTOTIC AND OSCILLATORY BEHAVIOR OF nTH–ORDER HALF–LINEAR DYNAMIC EQUATIONS

In this paper, we study the n th-order half-linear dynamic equations (x[n−1])Δ (t)+ p(t)φα[1,n−1] (x(g(t))) = 0 on an above-unbounded time scale T , where n 2 , x[i](t) := ri(t)φαi [( x[i−1] )Δ (t) ] , i = 1, . . . ,n−1, with x[0] = x, φβ (u) := |u|β sgnu , and α [i, j] := αi · · ·α j . Criteria are obtained for the asymptotics and oscillation of solutions for both even and odd order cases. Thi...

متن کامل

Even-order half-linear advanced differential equations: improved criteria in oscillatory and asymptotic properties

We establish some new criteria for oscillation and asymptotic behavior of solutions of evenorder half-linear advanced differential equations. We study the case of canonical and the case of noncanonical equations subject to various conditions. © 2015 Elsevier Inc. All rights reserved.

متن کامل

Oscillatory and Asymptotic Behavior of Fourth order Quasilinear Difference Equations

where ∆ is the forward difference operator defined by ∆xn = xn+1 −xn, α and β are positive constants, {pn} and {qn} are positive real sequences defined for all n ∈ N(n0) = {n0, n0 + 1, ...}, and n0 a nonnegative integer. By a solution of equation (1), we mean a real sequence {xn} that satisfies equation (1) for all n ∈ N(n0). If any four consecutive values of {xn} are given, then a solution {xn...

متن کامل

Asymptotic behavior of second-order dynamic equations

We prove several growth theorems for second-order dynamic equations on time scales. These theorems contain as special cases results for second-order differential equations, difference equations, and q-difference equations. 2006 Elsevier Inc. All rights reserved.

متن کامل

Asymptotic Behavior of Solutions to Half-Linear q-Difference Equations

and Applied Analysis 3 Next we present auxiliary statements which play important roles in proving the main results. Define F : 0,∞ → R by F x Φ x/q−1/q −Φ 1−1/x and h : Φ −∞ q ,∞ → R by h x x 1 − q1−α [ 1 − ( 1 ( q − 1 ) Φ−1 x )1−α] . 2.1 For y : q0 → R \ {0} define the operator L by L [ y ] t Φ ( y ( q2t ) qy ( qt ) − 1 q ) −Φ ( 1 − y t

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Differential Equations & Applications

سال: 2014

ISSN: 1847-120X

DOI: 10.7153/dea-06-31